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Heavy traffic limits associated

with M|G1|oo input processes
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Abstract

We study the heavy traffic regime of a discrete-time queue driven by cor-
related inputs, namely the M|GI|co input processes of Cox. We distinguish
between M|GI|oo processes with short— and long-range dependence, identi-
fying for each case the appropriate heavy traffic scaling that results in non-
degenerate limits. As expected, the limits we obtain for short-range dependent
inputs involve the standard Brownian motion. Of particular interest are the
conclusions for the long-range dependent case: The normalized queue length
can be expressed as a function not of a fractional Brownian motion, but of an
a-stable, 1/a self-similar independent increments Lévy process. The resulting
buffer asymptotics in heavy traffic display a hyperbolic decay, of power 1 — o
Thus, M|GI|oo processes already demonstrate that, within long-range depen-
dence, fractional Brownian motion does not necessarily assume the ubiquitous

role that standard Brownian motion plays in the short-range dependence setup.

1 Introduction

The apparent presence of long-range dependence and self-similarity in network traf-

fic has been suggested by several traffic measurement studies (e.g., WAN [24], Ether-
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net [17] and VBR video [3]), and points to the need of revisiting various performance
analysis and design issues. Indeed, as some recent experimental work [10] already
suggests, long-range dependence has a tangible and adverse effect on queueing mea-
sures such as buffer overflow probabilities, and its presence thus cannot be overlooked
or underestimated.

Roughly speaking, long-range dependence amounts to correlations in the packet
stream spanning multiple time scales, which are individually rather small but de-
cay so slowly as to be non-summable. This is expected to affect performance in a
manner drastically different from that predicted by (traditional) summable corre-
lation structures which typically arise in Markovian models. In order to gain some
understanding into long-range dependence, and its impact on queueing, various
traffic models with non-summable correlation patterns have been proposed in the
literature. These models include, among others, fractional Gaussian noise inputs
[1], fractional Brownian motion [21] and on/off sources with subexponential inter-
renewal periods [7, 14] . In all these cases, the corresponding buffer asymptotics do
not display the ezponential tails typically associated with short-range Markovian
models.

In this paper, we consider the class of discrete-time M |GI|oco input processes. An
M|GI|oo input process is understood as the busy server process of a discrete-time in-
finite server system fed by a discrete-time Poisson process of rate A (customers /slot)
and with generic service time o. Such M|GI|oco processes can account both for
short and long-range dependent behaviors, with the correlation patterns controlled
through o [Proposition 2.1]. Furthermore, asymptotic self-similarity arises when o
is Pareto-like, i.e., has a regularly varying tail of the form (4.1). M|GI|oo processes
have already been used by Paxson and Floyd to successfully model WAN traffic [24].
However, the relevance of M|GI|oo input processes to network traffic modelling is
perhaps best explained through the fact they naturally arise as the aggregate limit
of a large number of on—off sources [18].

As discussed in [9, 19, 22, 23], M|GI |oo processes induce a wide variety of
asymptotic behaviors for the buffer probabilities at a multiplexer with constant
release rate. In particular, when o has a regularly varying tail - the M|GI|oo
process is now asymptotically self-similar, the buffer asymptotics are hyperbolic in
nature, in stark contrast with the Weibullian tails induced by fractional Gaussian
noise (or fractional Brownian motion) [21]. Here, we further explore this discrepancy

in the heavy traffic regime [12]. In fact, the motivation for going to heavy traffic is



manifold:

First, under short-range dependence héavy traffic analysis has offered useful
characterization of queueing networks in terms of functionals on Brownian motion
[12], and it is therefore of theoretical interest to extend the analysis to the long-range
dependence setup. Such an extension would possibly help answer the question as to
whether fractional Brownian motion, the long-range dependent analog of standard
Brownian motion, does play a similar central role in the modeling of long-range
dependent traffic.

Next, heavy traffic information constitutes a key component of the light traffic
interpolation technique originally developed by Simon and Reiman in a series of
papers [25, 26, 27] in order to estimate performance metrics such as response times
in queueing systems driven by Poisson-like inputs. As we contemplate the possible
use of this technique with M|GI|oc input streams, we are naturally led to seek a
complete classification of the heavy traffic limits which arise when considering such
inputs.

Finally, a heavy traffic analysis of M|GI|oo processes might help elucidate the
noted difference in buffer asymptotics between M|GI|oo and fractional Gaussian
noise inputs. Unless this is due to some fundamental structural property, both
models are expected to have a heavy traffic characterization in terms of fractional
Brownian motion, in very much the same manner that different short-range depen-
dent models eventually collapse to a single description involving Brownian motion
[12]. Otherwise, despite asymptotically identical correlation patterns, the differ-
ences would carry over and manifest themselves even more clearly in the heavy
traffic regime.

The results presented here confirm the latter possibility: Under short-range
dependence, the class of M |GI|co inputs is found to belong to the domain of at-
traction of the standard Brownian motion, as expected. More significantly, we show
that under long-range dependence, with o belonging to the domain of attraction
of a non-normal stable law, the M |GIjoo process is not attracted to a fractional
Brownian motion, but instead to a non—Gaussian, a-stable Lévy motion which is
1/ self-similar. As a consequence, the distribution of the heavy traffic queue length
does not display a Weibullian, but a Pareto tail, with power 1 — « [Theorem 5.3].
These results underscore the fundamentally different nature of the long-range de-
pendent M|GI|oo process (when compared to fractional Gaussian noise), and also

point to the fact that fractional Brownian motion does not necessarily play for long—



range dependence the same key role that standard Brownian motion assumes under
short-range dependence. Within long-range dependence, there seems to be a choice
for distinct modeling possibilities, and it is not at all difficult to find rather simple,
potentially useful traffic models that are attracted to non—Gaussian limits.

The basic idea behind the proof of these results is a “convergence together” argu-
ment which allows us to identify processes with well-known heavy traffic behavior,
under both short— and long-range dependence. This is accomplished chiefly by
combining standard results on stable random variables and their domain of attrac-
tion [11], with a general functional convergence result for processes with stationary
independent increments due to Skorokhod [29]. We point out that, even in the
short-range dependent case, convergence to Brownian motion does not appear to
follow from standard results for stationary processes [4, Thm. 20.1, p. 174], as it
is not obvious that the M|GI|oo busy server process satisfies the required mixing
property. Note however that, as shown in [22], the M |GI|oo busy server process
is strongly positively correlated — it is an associated process. Because of this prop-
erty, it is then possible under short-range dependence to develop an alternative
approach [32], similar to that used by Newman and Wright in [20] in establishing
the Invariance Principle for associated random variables.

Related work on heavy traffic queueing analysis under long-range dependence
appears to have been initiated by Norros [21], where the presence of fractional Brow-
nian motion is postulated. This line of inquiry is further pursued in [30], while in
[7] Brichet et al. show how fractional Brownian motion can arise from a Gaus-
sian superposition scheme of infinitely many on/off sources with heavy tailed on/off
periods. In view of the fact that M|GI|oo processes arise from a different super-
position scheme of infinitely many on/off sources [18], it is not too surprising that
these lead to a different heavy traffic limit, involving Lévy motions. Heavy traffic
results similar and related to the ones given here have been reported in [15], where
only convergence of finite dimensional distributions is announced. The conclusions
discussed here were obtained independently, and were summarized in the conference
paper [31].

The remainder of the paper is organized as follows: The class of M|GI |oo input
processes, along with the discrete-time queueing setup, are introduced in Section
2. We explain how the queue is driven to heavy traffic in Section 3. The main
heavy traffic results are then stated in Section 4, while Section 5 discusses their

consequences on the queue length asymptotics. An outline of the proofs is presented



in Section 6. The proofs of the main results follow in Section 7, while the arguments
behind the “convergence together” are discussed in Section 8. In the appendix
Sections 9 and 10, we have summarized several technical facts concerning functions
of regular variation.

A few words about the notation used here. All rvs are defined on some probabil-
ity triple (22, F, P), with E denoting the corresponding expectation operator. We use
—, to denote weak convergence [4], and —}in to denote convergence in probability
(with 7 going to infinity). We write f(z) ~ g(z) (z — o) when Ilgnc}of(m)/g(w) =1.
Equality in distribution is denoted by =st, and inequality in the strong stochastic
order is denoted by <.

2 A multiplexer driven by M |GI|oo input processes

We begin by collecting some pertinent facts concerning the busy server process of
a discrete-time M|GI|oo system; the reader is referred to (8, 22] for proofs and
additional material on this class of processes.

Consider a system with infinitely many servers: During time slot [n,n+ 1),n=
0,1,..., Bns1 new customers arrive into the system. Customer j, 5 =1, Bn+1,
is presented to its own server and begins service by the start of slot [n + 1,n 4 2);
its service time has duration on41j (in number of slots). Let b, denote the number
of busy servers, or equivalently, the number of customers still present in the system
at the beginning of time slot [n,n + 1). If initially (i.e., at time n = 0) there were
already b busy servers, we denote by &; the residual service duration (in time slots)
for the j** busy server, j = 1,...,b. The busy server process {bp, n=10,1,.. s
what we refer to as the M|GI|oco input process.

Throughout, the IN-valued rvs b, {Bn+1, n=0,1,.. Y, {ong, n=12,..; g =
1,2,...} and {35, J = 1,2,...} satisfy the following assumptions: (i) These rvs
are mutually independent; (ii) The rvs {Bpt+1, 7 = 0,1,...} are i.i.d. Poisson 1vs
with parameter A > 0; (iii) The rvs {onj, 7 = 1,...; 7=12,...} are i.4.d. with
common pmf G on {1,2,...}. Let o be a generic IN-valued rv distributed according
to the pmf G, assume throughout that E[o] < oo; (iv) The rvs {5;, 1=12,-..}
are i.i.d. IN—valued rvs distributed according to the equilibrium pmf G associated
with G, i.e., if ¢ denotes a generic IN-valued rv distributed according to the pmf
G , then

Plo=nl=—%77> n=12,... (2.1)



The tail of the equilibrium pmf G direqtly controls the correlations of the se-
quence {b,, n=0,1,.. 3

Proposition 2.1 If b is taken to be a Poisson rv with parameter \E [o], then the
busy server process {bn, n=0,1,.. .} is a (strictly) stationary ergodic process with
the following properties:

1. For each n =0,1,..., the rv b, is a Poisson rv with parameter AE [o];

2. Its covariance function is given by
cov(bnijy bn) = AE [[0 — j1f] = AE[0]P[G >J], nj= 0,1,...

3. Its index of dispersion of counts (IDC) is given by

IDC = Y cov(bnyj, bn) = AE[0] S PE>g]= %E [o(c +1)],
j=0 =0

and the process is short-range dependent (i.e., IDC finite) if and only if B [0?] is
finite.

In short, a stationary M|GI |oo input process is fully characterized by the pair
(X, 0), and displays time dependencies which are determined by the tail of o. We now
offer such a stationary M|GI|oo input process {bp, n=1,2,...,} toa multiplexer
which we model as a discrete—time single server queue with infinite buffer capacity,
operating at a constant rate and in a first-come first-served manner. Let g, denote
the number of cells remaining in the buffer by the end of slot [n —1, n), and let bp41
denote the number of new cells which arrive at the start of time slot [n,n+1). If the
multiplexer output link can transmit ¢ cells/slot, then the buffer content sequence

{gn, n=0,1,...} evolves according to the Lindley recursion
q0 = Oa qn+1 = [Qn + bn—H - C]+7 n= Oa 17 v (22)

By Part 1 of Proposition 2.1, the average input rate to the multiplexer is simply
E [b,] = AE [0], and it can be shown that the system is stable if \E [o] < ¢, in which
case qn =>n (oo fOr some IN—valued 1V ¢oo-

The output to the Lindley recursion (2.2) admits an equivalent representation,
which is useful for establishing heavy traffic limit theorems: We can write

qo =05 gn = 8y, — nc — inf (s; — J¢, j=0,1,...,n), n=1L12...

upon defining the partial sums {sn, n=0,1,...} by

n
s0=0; sp= b n=12,... (2.3)
j=1



3 The heavy traffic regime

We seek to understand the behavior of the (stable) queue under the assumption that
it is almost fully utilized, i.e., AE [0], though less than the release rate c, is very
close to c. This typically involves obtaining limiting expressions of properly rescaled
quantities of interest, as the traffic intensity p = AE [o] /c tends towards its critical
value 1. Here, the quantity of interest is the steady-state queue size Geo- A natural
setup to investigate this problem consists of embedding the discrete-time queue with
release rate ¢ driven by an M|GI|oo input process (A, o) into a parametric family
of like queueing systems, indexed by an integer parameter, say 7. More precisely,
for each r = 1,2,... we take the rth system to be a discrete-time queue with release
rate ¢ driven by an M|GI|co input process {b],, n =0,1,...} characterized by the
pair (\r,0). The corresponding queue size sequence {q, n =0,1,...} also obeys

the Lindley recursion (2.2), and can be represented as

@, =s;—nc—inf(s§ — je, j=0,1,...,n), n=12... (3.1)
where {s, n = 1,2,...} is the sequence of partial sums (2.3) associated with
{br, n=1,2,...}. We take \,E [o] <cforallr=1,2,..., with

Tli)rgo)\r =c/E|[o]. (3.2)

Thus, each one of these systems is stable with rllg}o pr = 1, thereby capturing the
notion that “the system is driven to heavy traffic.” We seek a scaling sequence
{¢, r=1,2,...} such that the convergence in distribution

9o

G =, Q (3.3)

takes place to some R-valued rv Q.

Unfortunately, this heavy traffic program cannot be carried out in this form as
exact expressions are unavailable for the distribution of ¢, owing to the correlations
present in the M|GI|oo input process, and we need to resort to the following indirect
approach where the buffer content is rescaled in both the time and state space
variables. Thus, for each r = 1,2,..., we define the R~valued continuous-time
processes {S7(t), t > 0} and {Q"(t), t > 0} by

sr(t)z%(sfrt]—E[sfrﬂ]) and  Q7(¢) =



and we introduce the function 4" : Ry — IR given by

4 (1) = Cl (rtle—E [sftr]]) = [z—t] (c— ME[o]), t>0.

We note that (3.3) can informally be stated as

lim lim Q" (t) = Q (3.4)

T —00t—00
with limits understood in the sense of weak convergence. The approach to heavy
traffic followed here is to interchange the order of these limits, i.e., to evaluate

lim lim Q"(¢) (3.5)

t—o0 700
which corresponds to first taking 7 — oo, and then letting ¢ — co. Assuming that
the limits can be taken in that order, we are then left with the task of showing that

lim lim Q"(t) = Q = lim lim Q" (). (3.6)

Tr—00 t—00 t—o0 10

In this paper we concentrate only on establishing the first step (3.5), and it is
well known [12, 33] that the theory weak convergence on function spaces provides
a natural framework for doing so. To that end, we pause briefly to introduce the
needed notation, as well as to highlight several points from the theory of weak
convergence of processes; this material is drawn mostly from [4, pp. 150-153] to
which the reader is referred for additional information:

For each T > 0, let D[0,T] denote the space of mappings [0,7] — R which
are right—continuous with left limits; the space D[0,T] can be equipped with either
the uniform topology or the standard Skorokhod topology [4, p. 111]. Asin [4, p.
150], a concept prefixed with U (resp. S) refers to the uniform (resp. Skorokhod)
topology. For probability measures defined on the collection of U-Borel (resp. S-
Borel) sets on D[0,T], we refer to weak convergence in the sense of the uniform
(resp. Skorokhod) topology by U-weak (resp. S-weak) convergence, and we write
. (resp. :S—>T) (with the understanding that r goes to infinity). For probability
measures defined on the collection of U-Borel sets, U-weak convergence implies S—
weak convergence but the converse is false. This implication will be used repeatedly
in various technical arguments [Sections 6 and 8].

Finally, let D[0,00) denote the space of mappings R4 — IR which are right—
continuous with left limits. In this paper, we present results on the S-weak con-

vergence of the restrictions to finite intervals of sequences of R~-valued processes



with sample paths in D[0, 00). More precisely, consider the sequence of R-valued
processes {X,(t), t > 0}, r = 1,2,..., with sample paths in D[0, 0c0). Whenever, for

each T > 0, we have the S—weak convergence
(X,(t), 0 <t <T} =5, {X(t), 0<t<T} inD[0,T] (3.7)

for some R-valued process {X (t), t > 0} with sample paths in D0, co), we simplify
the notation by writing

{X-(t), t >0}=,{X(t), t >0} (3.8)
Now, noting that (3.1) can be rewritten as

Q1) = 5"(t) =" (1) — inf (§"(z) = Y (z), t=0, (3.9)

and recalling the continuous mapping theorem [4, Thm. 5.1, p. 30], we conclude
that the first limit in (3.5) requires at the very least identifying a scaling sequence

{¢r, 7=1,2,...} that ensures the convergence
{S7(#), t > 0} =, {S(1), t > 0} (3.10)

for some non-trivial limiting process {S(t), ¢ > 0}.

4 The main heavy traffic results

As will become apparent shortly, the choice of the scaling sequence {¢-, r = 1,2,.. )
and the characterization of the limiting process {S(¢), t > 0} entering (3.10) both
depend on the distribution of the rv o which controls the correlations in the input
cell stream. It is nevertheless easy to see that in order to avoid collecting only a law
of large numbers, any candidate scaling sequence {¢;, 7 =1,2,.. .} should obey the

following necessary condition:

Condition (A) The scaling sequence {{,, 7 =1,2,...} satisfies
Cr

lim(, = +oo with lim — =0.
r—00 r—oo 1

The heavy traffic assumption below refines (3.2), and guarantees that, as r — oo,
the family of queueing systems described by (3.9) gradually approaches instability
at the appropriate speed:



Assumption (A) The scaling sequence {{;, r =1,2,.. .} satisfies

lim (A\E [0] — ¢) T = —~ or equivalenty, ME[o]=c— i—r(fy +0(1))

r—00 CT

for some v > 0.

Condition (A) and Assumption (A) are enforced throughout. It is worth pointing
out that the scaling sequence {¢,, 7 = 1,2,...} is essentially unique, l.e., any other
scaling sequence {¢/, 7 = 1,2,...} yielding a non-degenerate limit in (3.10) must
satisfy hm CT /¢, = C for some finite constant C' > 0.

We begm with the case where the M|GI|oo process is short-range dependent
and let {B(t), t > 0} denote a standard Brownian motion.

Theorem 4.1 (Short-range dependence) If E [0?] < oo, then with { = Jr,r =
1,2,..., it holds that

{57(t), t =0} = {

), t >0}
The remaining results are obtained under the additional assumption that the
tail of o is regularly varying of order a (1 < a < 2), i.e., of the form
Plo >n]=n"%h(n), n=0,1,... (4.1)

for some slowly varying function h : Ry — IRy [11], in which case the mean E (o]
is finite. Of particular interest for the forthcoming discussion is the realization that

the truncated second moment of o is (2 — a)-regularly varying. Writing

hiz) fl<a<?2

lo(z)={ 1l ) o (4.2)

for all z > 0, we can show via Proposition 9.2 that the function lo : Ry = IRy is

slowly varying and, whenever E [¢°] = oo,
E [1 [0 < n] 02] ~ 127 (n), (n — o). (4.3)

The details of the proof of this asymptotic equivalence are identical to those of (7.10)
and (7.11).

The next proposition handles the boundary value a = 2, which represents a
hybrid case between short and long-range dependence.

10



Theorem 4.2 Assume o = 2 in (4.1) with E [0?] = oco. Then, with {{;, 7 =
1,2,...} satisfying

lim —ls(¢,) = lim - [1[0 < ¢] o] = K (4.4)

r00 C,’? r500 C’?

for some positive constant K, it holds that

(S7(8), ¢ > 0} =, {*/Ec—% B(t), t > 0}.

Finally, we turn to the case of bona fide long-range dependence, ie., 1 < a <2.
Recall that a Lévy process is an IR-valued process with stationary independent
increments. We let {Lq(t), t > 0} denote a standard a—stable, spectrally positive
Lévy motion, i.e., a Lévy process such that Lo(0) = 0 a.s. and for t > 0 the rv
Lo(t) is a stable rv S, (t1/ 1,0) [28] characterized by

E [exp(i6La(t))] = exp (—t|9|"‘ (1 _ isgn(0) tan(%))) CPeR. (45

Theorem 4.3 (Long-range dependence) If 1 < a < 2 in (4.1), then with {¢r,r =
1,2,...} satisfying

lim —h(¢) = lim rPlo > ()= K (4.6)

r—00 CT

for some positive constant K, it holds that

{87(t), t >0} =, {C(K) La(t), t 20} (4.7)
where KT ) V/a
C(K) = <fa——(7)%% cos(r ;“)) . (4.8)

We close with a characterization of the scaling sequences encountered in Theorems

4.2 and 4.3; its proof is available in Proposition 10.3 of Section 10.

Proposition 4.4 The scaling sequence {¢;, 7 =1,2,.. .} of Theorems 4.2 and 4.3
is 1/a-regularly varying, 1 < a <2, i.e., of the form ¢r = ri/ep(r) for some slowly
varying function h: Ry - Ry

5 Consequences and comments

Several interesting inferences follow from the heavy traffic results obtained so far.

11



5.1 Queue size

We start with the heavy traffic behavior of the normalized queue length. Whenever
the convergence (3.10) holds, we can immediately conclude from (3.9) and from the
continuity of the reflection mapping (via the continuous mapping theorem [4, Thm.
5.1, p. 30]) that

{Q (1), t >0} = {Q(¢), t =0} (5.1)
with
Q(t) = S(t) — vt - Oégfst (S(z) —vyz), t=0. (5.2)

The form of the limit derives from (3.9) and the fact that lim 4" (t) = —vt under
Assumption (A).
This observation can now be used to provide a characterization of the steady-
state buffer content in heavy traffic under the assumptions of Theorems 4.1-4.3.
In the short-range dependent case, Theorem 4.1 combines with a classical result

on the supremum functional of Brownian motion [12, p.15] to yield the following.

Theorem 5.1 Under the assumptions of Theorem 4.1, the resulting stationary
heavy—traffic buffer content is exponentially distributed with

lim P [Q(1) > 5] = exp (‘% b) b0

Theorem 4.2 leads via (5.1)—(5.2) to a similar result.

Theorem 5.2 Under the assumptions of Theorem 4.2, the resulting stationary
heavy-traffic buffer content is exponentially distributed, with

2vE [o]

tl_igloP[Q(t)>b]=exp<— e b), b>0.

Finally, in the stable case we combine Theorem 4.3 with the developments in [5,

Theorem 12a] to get the following fact.

Theorem 5.3 Under the assumptions of Theorem 4.3, the distribution of the re-
sulting stationary heavy-traffic buffer content has a Pareto tail given by

lim P[Q(t) > b] ~ cK

l1—a
Jim A= DED] B (b — o0). (5.3)

12



5.2 On selecting the heavy traffic scaling

As the appropriate scaling sequence {¢;, r = 1,2,...} is revealing of the nature of
the limiting heavy traffic process {S(¢), t > 0}, we briefly discuss here its selection.

It is known [16] that convergence of a normalized partial sum process, such as
{S7(t), t > 0}, can only be to a self-similar process, and that the correspond-
ing Hurst parameter H may be determined through the regularly varying scaling

{¢, r=1,2,...} by

lim @:a:H, z > 0.
r—oo (.

On the other hand, under (4.1) with 1 < a < 2, the M|GI|oo busy server pro-
cess process already possesses the so-called second order asymptotic self-similarity
property, with parameter (3 — a)/2 [18], i.e., by aggregating the original process
{bp,n =0,1,...} in blocks of size m and dividing by the block size, we can obtain
in the limit as m goes to infinity the same correlation function as that of a fractional
Brownian motion. Because of this fact it would be tempting to think that the ap-
propriate scaling ensuring (3.10) might be the one that balances the rate of growth
of the partial sums variance, so that convergence occurs to a limiting process with
finite variance. By standard calculations, we find the partial sums variance to be
_ ME([o]

[rt]
var [S”(t)] = a2 ([rt] +2 Z([rt] - kP[> k]) , t>0 (5.4)
r k=1

forallr = 1,2,.... Asshown in [32], when the tail of o satisfies (4.1) with1 < o < 2,
the candidate scaling {(,, r = 1,2,...} given by

T
P=ry P>k, r=12,... (5.5)
k=1

indeed results in a finite limiting variance, i.e., Tli}rg() var [ST(t)] exists and is finite for
all ¢ > 0. In addition, invoking (9.24) we see that this scaling has the asymptotic
form .
2 3—a
~ h — 00).

As such a scaling is clearly (3 — «)/2-regularly varying, it suggests possible con-

vergence to a fractional Brownian motion with Hurst parameter (3 — a)/2. For
a single M|GI|oo process however this is not true as such convergence to a frac-
tional Brownian motion does not take place. In fact, the candidate scaling (5.5),
which balances the growth of the variance, is too strong and yields convergence to
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a degenerate limit — the identically zero process. Theorem 4.3, in conjuction with
Proposition 4.4, clearly shows that the correct scaling does not contain any p(3-0)/2
factor; but instead contains the weaker rl/e factor associated with the stable law to
which the service rv o is attracted. As a result, the limiting heavy traffic process
turns out to be not a fractional Brownian motion but an a-stable 1/a-self-similar
Lévy motion, the stable analog of standard Brownian motion, which has infinite vari-
ance and independent increments. In heavy traffic, the corresponding queue length
asymptotics are not Weibullian, but hyperbolic in nature, with power 1 — o Thus,
the M|GI|oo processes demonstrate that, within long-range dependence, fractional
Brownian motion does not assume the ubiquitous role that its short-range depen-
dent counterpart, standard Brownian motion, plays in the short-range dependence
setup, and that modeling possibilities attracted to non-Gaussian limits are not so
hard to find. Clearly, the extent to which such non-Gaussian processes can serve as

useful traffic models deserves some further consideration.

6 Outline of proof and preliminary results

In this section we organize the proof of Theorems 4.1-4.3 into a series of steps which
we formalize as Propositions; their proofs are given in Section 8.

Look at the rt* queueing system, r = 1,2,..., and fix n = 0,1,.... We note the
decomposition b}, = pT 4 b%a)T where the rvs be’)’ and b describe the contribu-
tions to the number of customers in the system at the beginning of slot [n,n + 1)
from those initially present (at n = 0) and from the new arrivals, respectively. It is

easy to see that

b" n ﬁ;
b = Z 1[g; >n] and e = Z Z 1[ok; >n—k].
7=1 k=1j=1
It was shown in [22] that
n b"
sOr =389 = 3 min(n, 5; - 1) (6.1)
j=1 j=1
and
n n B
s = S0 =3 min(ogj,n — k+ 1), (6.2)
k=1 k=1j=1
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We introduce the rescaled versions

SO () = Cl (SEO)T _E [8(0)r]> and  S@r () = Ci (Sfa)r B [Sfft)}r]) L t>0

_r Tt [rt]

so that
S7(t) = SO @) + S@r(t), t>0. (6.3)
Also, for each T > 0, the identically zero mapping on [0, T] is the element of D[0,T]
denoted by Or, i.e., 7 : [0,T] > R with 07(t) =0, 0 <t <T.
We first show that the initial condition plays no role in the heavy traffic limit,
as should be expected. This reduction step, as well as others taken in this section,

is accomplished under the following sufficient condition.

Condition (B) The scaling sequence {(,, r = 1,2,...} satisfies

D I
Tl_lgloc—rz Plg>j]=0.
Jj=1

Condition (B) holds under each set of assumptions of Theorems 4.1-4.3; this is

shown in Proposition 7.1 of Section 7.
Proposition 6.1 Under Condition (B), for each T > 0 it holds that
(SOr(t), 0<t<T} =L, 60 in D[0,T).

Thus, in order to get (3.10) it suffices to consider the limiting behavior of the
rescaled process {S(“)T (t), t > 0}. To that end, for each r = 1,2,..., we introduce

the sequence {w},, n=0,1,...} given by

n B

ZZU}C,J’, n———1,2,... (6.4)

k=1j=1

wy =0, w),

which can be interpreted as the contribution to the workload due to arrivals only.

The corresponding rescaled process {W7(t), t > 0} is given by

1
G
The main idea driving the discussion is that in as much as heavy traffic is concerned,
the process {W"(t), t > 0} acts as a surrogate for {8@r(t), t > 0}. This is made
precise through the following “convergence together” result.

W (%) (why - Efupy]), t>0. (6.5)
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Proposition 6.2 Under Condition (B), for each T > 0 it holds that
(W(t) — @ (t), 0<t<T} =%, 0r in D[0,T].

Combining Propositions 6.1 and 6.2, we immediately get the following conclusion
from (6.3).

Corollary 6.3 Under Condition (B), for each T > 0 it holds that
(W(t) - ST(t), 0 <t <T} ==, 0r in D[0,T],

so that the process {S7(t), 0 < t < T} is S—weakly convergent if and only if
{W"(t), 0 <t < T} is S—weakly convergent, and convergence is to the same limit.

Thus, we need only consider the convergence of the process {W7(t), ¢ > 0}, and
characterize the limiting process. In fact, a further reduction can be achieved by
noting that in heavy traffic we can replace {8,k = 1,2,.. .} by the limiting i.i.d.
sequence {B,k = 1,2,...}, where the generic rv §is a Poisson rv with parameter
¢/E [o]. More precisely, consider the modified workload process {v,, n=0,1,...}
given by

n Bk
vo=0; v, = Z Ok, n=12,... (6.6)
k=1j=1
under the assumption that the rvs {8,k = 1,2,...} are independent of the service
time rvs {on;, n,j = 1,2,...}. Foreach r =1,2,.., the corresponding rescaled
process {V7(t), t > 0} is defined by
1

Vi =& (v — B [opg] ), 20, (6.7)

Proposition 6.4 Under Assumption (A), the process {W"(t), 0 <t < T} is S-
weakly convergent if and only if {V"(t), 0 <t < T} is S-weakly convergent, and

convergence is to the same limit.
Corollary 6.3 and Proposition 6.4 together lead to the following conclusion:

Corollary 6.5 Under Assumption (A) and Condition (B), the process {S7(t), 0 <
t < T} is S—weakly convergent if and only if {Vv'(#), 0 <t < T} is S-weakly

convergent, and convergence is to the same limit.
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7 Proofs of Theorems 4.1-4.3

First, the big picture: Corollary 6.5 and Proposition 7.1 (given below) imply that
in proving Theorems 4.1-4.3 we need only investigate the convergence of the mod-
ified workload process (6.7). This is a much easier task as we now deal with the
(normalized) partial sums process associated with a single sequence of 7.¢.d. rvs,
of finite mean but possibly infinite variance, an extensively studied situation where
the (functional form of the) classical Central Limit Theorem and its generalization
to i.i.d. summands with infinite variance, are expected to yield the requested con-
vergence. In fact, as we shall see shortly, the convergence of the finite dimensional
distributions of {V7(t), ¢ > 0} turns out to be an easy by—product of classical
results concerning stable distributions and their domains of attraction [11, pp. 574~
581]. Finally, the desired S—weak convergence of the process {V"(t), ¢ > 0}, thus
of {S"(t), t > 0}, will be validated through the functional convergence results due
to Skorokhod [29]. This approach clearly explains the form of the results obtained
in this paper, providing insights as to when the process {V7(t), ¢ > 0} is expected
to converge, and to which limit.

And now, on with the details: In Section 9 we give a proof that the technical
Condition (B) required to establish the “convergence together” argument, indeed

holds under the assumptions of Theorems 4.1-4.3.

Proposition 7.1 Condition (B) holds true for each of the scaling sequences {G,r =
1,2,...} in Theorems 4.1-4.3.

Next, we consider the generic compound rv Y given by

g
Y = ZU]‘ (7-1)
7=1

where the rv 3 is a Poisson rv with parameter ¢/E [0] and independent of the i.i.d.
rvs {05, 7 =1,2,.. .} which are distributed according to o. Fixing ¢ > 0, we note

that
1 [rt]

st C_Z(Yk_E[Yk])v r=12... (72)
T k=1

where the i.i.d. rvs {Y;, k = 1,2,...} are distributed according to the generic rv Y.

Vr(t)

For easy reference, we restate some useful facts concerning stable distributions

and their domains of attraction; the reader is refered to [11, pp. 574-581] for
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additional material: Let L be a rv with distribution not concentrated at one point,
and let {X,, r = 1,2,...} be a sequence of i.i.d. rvs, with generic rv X. We say
that X belongs to the domain of attraction of the rv L if there exist normalizing
constants {, > 0 and ¢,,7 = 1,2,..., such that

Xi+...+ X, —re
Cr

By Theorem 1 of [11, p. 576] only stable rvs possess a domain of attraction. By

=, L. (7.3)

Theorem 2 in [11, p. 577], in order for X to belong to the domain of attraction of
a stable law with exponent «, 0 < o < 2, it is necessary that its truncated second

moment be regularly varying with exponent 2 — ¢, i.e.,
E [1 (X < 1] X2] ~ 2 %(r)  (r = o0), (7.4)

for some slowly varying function g : R4 — IRy. The associated scaling sequence
{¢, m=1,2,...} in (7.3) must satisfy
. r 2
Jim > E [1[X <¢)1XY =M (7.5)
for some constant M > 0 [11, p. 579]. Moreover, if E [X] is finite, then by Theorem
3(ii) of [11, p. 581] we can take ¢, = E[X], r =1,2,....

We are now ready to discuss Theorems 4.1-4.3 which are all proven in the same
manner, although for clarity of presentation, we shall consider each of them sepa-
rately. As E [Y] is finite under the enforced assumptions, we conclude from (7.2) and
(7.3) that for each t > 0, the convergence question concerning {V'(¢), r =1,2,...}
is equivalent to determining whether the rv Y is attracted to a stable law, and to
which one. In asserting this equivalence we rely on the fact that the scaling sequence
{¢, r = 1,2,...} so selected is regularly varying; this turn out to be the case by

Proposition 4.4, so that
TR L Y (7.6)

r—00 Cr

In each case, we show that both the necessary condition (7.4) and the accompanying
sufficient condition stated in [11, p. 577] are satisfied. This occurs simply because
the generic rv Y inherits the tail behavior of the generic service time ¢ under each

set of assumptions of Theorems 4.1-4.3.

A proof of Theorem 4.1. Since E [0?] < oo, the variance of Y is also finite, and
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is given by B (o]
cE o
Efo] -

Hence, the truncated second moment of Y varies slowly, i.e., (7.4) holds with @ =

var [Y] = var [3] E [0]> + E 8] var [0] = (7.7)

2 and as Y is never degenerate at one point, it follows from Corollary 1 to Theorem
2 in [11, p. 578] that Y is attracted to the normal distribution. Obviously, the
scaling ¢ = /7, r = 1,2,... satisfies (7.5), with M = cE [0?] /E[0]. In fact, by a
well-known result of Donsker [4, Thm. 16.1, p. 137], selecting {; = /r, 7 =1,2,...
ensures that the process {V7"(t), t > 0} is S-weakly convergent to a Brownian
motion, with

(VT(®), t >0} ==, {VM B(t), t > 0}. (7.8)

Combining (7.8) with Proposition 7.1 and Corollary 6.5 immediately concludes the
proof. [ ]

Under the assumptions of Theorems 4.2 and 4.3, E [0?] is infinite, and the compound
Poisson rv Y now has infinite variance. Also, if o satisfies the tail condition (4.1),
so does Y with

8
PlY>r]=P l:z oj>r| ~E[f] r™%h(r) (r— o00). (7.9)
j=1

The asymptotic equality in (7.9) is stated as an exercise in [11, Ex. 31, p. 288],
where the reader will find hints for its proof. Next, we check that the truncated

second moment of Y is given by

r r—1
E[1[y <r]Y?| =23 nP[Y >n]—r(r+2P[Y > 1]+ 3 P[Y >n]
n=1 n=0
for each r = 1,2,..., and using (7.9) in this last expression we find that

E[1[Y <7] v ~Eg] (2 Z n'=®h(n) — r2_ah(r)> (r — 00) (7.10)

n=1

because E[Y] is finite and E [Y?] is infinite. We close these preliminary remarks
by noting that the truncated second moments of o and Y are obviously related to

each other by

E[1]y <r]Y?!] ~E[4E 1 o <r]o?] (r— o). (7.11)
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A proof of Theorem 4.2. Inserting o = 2 in (7.10) and using the definition (4.2)
(with a = 2), we get

E[1[Y <r]Y?] ~E[f] (2(r) —h(r)) (r = o0).

By Proposition 9.2(ii), I : Ry — Ry is slowly varying with

h(r)

TIEE‘OZZ( ) =0,
so that
E[1[Y <7] Y2 ~E[f] b(r) (r— o). (7.12)

This time, by Corollary 1 in [11, p. 578], the slow variation of the truncated second
moment is a necessary and sufficient condition for ¥ to be attracted to the nor-
mal distribution, with normalizing coefficients selected according to (7.5) (despite
the fact that the variance of Y is now infinite). Since the marginals of the process
{V"(t), t > 0}, which has stationary, independent increments, converge to a Gaus-
sian distribution, it follows by [29, Theorem 2.7] without any additional conditions
that (7.8) takes place. Because of (7.12), selecting the scaling {, r=1,2,...}
according to (7.5), with M = cK/E o], is equivalent to (4.4). Combining (7.8) with
Proposition 7.1 and Corollary 6.5 completes the proof. [ ]

A proof of Theorem 4.3. When 1 < o < 2 in (4.1) the rvs 0 and Y have

infinite second moment, and Proposition 9.2(i) implies

1
l1-a
rlL‘Eorz ah 7 2 Zn h(n aivE (7.13)
Using this asymptotic in (7.10) we get
E [1 Y <r] Y2] ~ fa E[8] r**h(r) (r — o). (7.14)

Tnvoking Corollary 2 of [11, p. 578], we see that (7.14) and the tail condition (7.9)
are sufficient to ensure that Y belongs to the domain of attraction of a non—normal
stable distribution with exponent 1 < a < 2. The associated scaling sequence
{¢r, 7 = 1,2,...}, selected according to (7.5), yields convergence of the marginal
distribution of V7(1), as r goes to infinity, to that of an a-stable rv, ie.,

—a —a)\\e
Jim E [exp(10V7(1))] = E [exp (i@ (—@E——) cos(7r2 )) La(1)>jl , #eR.

ala—1) 2
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The exact value of the constant given above can be easily verified, by recalling the
expression (4.5) for the characteristic function of L, (1) and comparing it with Eq.
(3.18) of [11, p. 730] (note the unfortunate error in the + sign). Next, appealing
to [29, Theorem 2.7} again, we conclude that convergence of the marginals also
implies S—weak convergence of the process {V7(t), ¢ > 0}, which has stationary,
independent increments, to an a—stable Lévy motion. More precisely, it holds that

—a —a 1/
V1), t> 0} =5, {(]‘gf’_ 1)) cos(> . )) La(t), t>0}.  (7.15)

Using (7.14) in (7.5) with M = c¢Ka/(2 — «)E [o] we obtain the scaling sequence
{¢, m=1,2,...} given in (4.6). Finally, combining (7.15) with Proposition 7.1 and
Corollary 6.5 shows that (4.7) holds true. [ ]

8 Proofs of Propositions 6.1, 6.2 and 6.4

We start by remarking that if the sequence {(,, r = 1,2,...} is regularly varying
(as stated in Proposition 4.4), then Condition (B) also implies

[rt]
hm—ZPa>y]—0 t>0. (8.1)

T—00

All three proofs given in this section follow the same pattern, and are based on
the following simple idea: Consider a sequence of R-valued processes { X" (¢), t > 0},
r = 1,2,..., with sample paths in D[0,00). Fix T' > 0. According to Theorem 4.1

of [4, p. 25], in order to prove the U-weak convergence
{(XT(t), 0<t<T}=%, 67 in D[0,T), (8.2)
it suffices to establish the convergence in probability

sup |X"(t)| 5, 0. (8.3)
0<t<T

A proof of Proposition 6.1. Fix r = 1,2,..., and note from (6.1) that

b"
sup |S© Z min(; — 1, ["T]) + A’IZ["] E [min(5 — 1, [rT])].

1
0<t<T C
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Hence, for every ¢ > 0, it is plain that

P [ sup |SO(t)] > €

0<t<T
1 & A\E
< P |:<— Zmin(ﬁj —1,[rT)) + = lo] E [min(¢ — 1,[rT])] > €
T =1 r
20-E
< 2\, Blo] E [min(G — 1, [rT7})] (8.4)
Gr
where the last step follows by Chebyshev’s inequality. It is also the case that
[rT]-1
E [min(s — 1,[rT))] = z P [min(7 — 1, [rT]) > n|
n=0
(rT]-1
= > P[E-1>n]
n=0
[rT]
= Z P[5 > n]
n=1
Appealing to Condition (B) and (8.1), we get
. . 1
Tll)rgoE [C_r min(g — 1, [rT])_ =0 (8.5)
and the conclusion W
limP | sup |SO7(t)| >e| =0
lim Lgé’T' @l > ¢
immediately obtains from (3.2) upon letting r go to infinity in (8.4). [

A proof of Proposition 6.2. Fixr =1,2,.... From (6.2) and (6.4) we note that

n B

wh — s = S N ok —(n—k+1)7T

k=1j=1

r
n j=k+1

= Y > (Onkt1

k=1 j=1
n By

= 22 (ok;— k),

k=1j=1
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where in the last step we used the mutual independence of the families of i.i.d. rvs
{B;, k=1,2,...} and {0k, k,j = 1,2,...} are mutually independent. It is now
straightforward to check that

[*T] By A [rT] .
sup W (t) - S (1)] <, okn— Kt + 25 E[0-k)Tt]. (87
osé)Tl ®) O <ot kzjlnzl k ‘ k:Xz:l [(e —k)T] (8.7)

By Chebyshev’s inequality, for every € > 0 we obtain

P| sup [W'(t)—S@(#)| >e| <

ZE o—k

0<t<T €Cr =
(rT]
20 E[o] .
= —— % Plo>k],
o L P> H
and the desired convergence
sup [W(t) — S@r ()] 5, 0 (8.8)

0<t<T

follows upon letting r go to infinity in the upper bound (8.8), and making use of
(3.2), Condition (B) and (8.1). |

The proof of Proposition 6.4 requires estimates that derive from various mar-
tingales inequalities; we now state them in Lemmas 8.1 and 8.2 for easy reference:
Consider a collection of integrable rvs {X;, i = 1,...,n} adapted with respect to the
filtration {F;, i = 1,...,n}, e, for each i = 1,...,n, the rv X; is F;,~measurable.
We also write

S;i=X1+...+X;, i=1,...,n. (8.9)

Lemma 8.1 (Maximal inequality [13]) Assume {(S;, Fi), @ = 1,...,n} to form a
martingale. Then, for each p > 1, it holds that

p [ max |51 > A] < APE[|S.], A> 0.

Lemma 8.2 (von Bahr — Esseen inequality [2]) Assume {(X;,F;), i = 1,...,n}
to form a martingale difference. If E[|X;|P] < oo for all i =1,...,n, then

E[S.F) <2 E[XiF], 1<p<2
i=1
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In what follows Lemmas 8.1 and 8.2 are applied to the case when the rvs {X;, i =

1,...,n} are zero-mean i.i.d. rvs.

A proof of Proposition 6.4. Recall that the rvs {8, k¥ = 1,2,...} are ii.d.
Poisson rvs with parameter ¢/E [o], which are independent of the sequence of i.i.d.
service rvs {okj, k,7 =1,2,...}.

Fix r = 1,2,.... On the same probability triple (2, F,P) where the previ-
ously mentioned rvs are defined, we introduce a family of ii.d. {0,1}-valued rvs
(Up, ki=1,2, }ie,

o

where U” denotes the generic rv for this i.i.d. sequence. The rvs {U,:,j, k,j =
1,2,...} are assumed independent of the collections of rvs mentioned so far. Next,
we define the rvs {Bz,k =1,2,...} by

B
Br=> Ui k=12,...
j=1

We also define the workload process {@},, n =0,1,...} corresponding to {B;, k=
1,2,...} by

Under the enforced independence assumptions, it is easy to check that {B};, k =
1,2,...} =5 {6, k=1,2,...}, and that

(W), 0<t<T} =g {W'(t), 0<t<T}.

Moreover, these rvs are all defined on the same probability triple as the rescaled
process {V"(t), t > 0}. Thus, the result will be established if it holds that

(VT(t) = W™ (t), 0<t< T} =, 6p in D[0,T],
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or equivalently, if we can show that

P

sup |V (t) — W (t)| — 0. (8.10)
0<t<T
To that end, for each 7 = 1,2, ..., we note from the definitions that
n Bk
Wy, = Z Z Ui jokjs n=12,...
k=1j=1
so that
n Bk
o, =@ =3 Y (1-Uf )oki, n=12,... (8.11)
k=1j=1
The rvs {Z], k =1,2,...} defined by
Be
Zr =Y (1-Ui ok k=12,... (8.12)
i=1

are i.i.d., and we denote by Z” the corresponding generic rv associated with this
collection of rvs. It is plain from (8.11) and (8.12) that

> (Zk —B[Z)
k=1

—~ 1
sup [V7(t) - W'(t)| = = sup
0<t<T r 1<n<[rT)

. (8.13)

Fix ¢ > 0. Invoking the maximal inequality for martingale sequences [Lemma 8.1},

we get
» 1 (rT] P
P L?tlngV (t) — W (t)| > s] < Ea E Lg(zk —E[Z})) } (8.14)

with p selected such that 1 < p < a < 2. This selection of p ensures E [0P] < o0
both under short-range dependence and under the assumption of regularly varying
tail (4.1). The von Bahr — Esseen inequality [Lemma 8.2] for martingale differences
can now be applied to the right handside of (8.14) to yield

1 [(rT] . . p Q[TT] T .
Az E[,;(Z’“E[Zk]) }5 copBl7 -EIZ. 819)

By the convexity of z — 2P (p > 1) on R, we find

EB[|Z —E(Z']F] <2~ (B(Z'P] + BZ'|F) < 2B [ZP) (8.16)
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with the last step validated by Jensen’s inequality. Next, using the definition of Z",

we obtain by the same convexity argument that

B
E[Z7]P|6] < 7' E {2(1 —UpPo? w} = PE[|E[1-UV] as. (817)

J=1

under the enforced independence assumptions (and with an obvious notation). In-
jecting the bounds (8.16) and (8.17) into (8.15), we conclude from (8.14) that
2P+l [rT)

ST BB ZEI-UTY] (818)

<

P [ sup |V (¢) — W) > e
0<t<T

As the heavy traffic Assumption (A) implies
lim —E[(1- U] =2, (8.19)
c

r—»oo{r

the desired conclusion (8.10) now follows by letting 7 go to infinity in (8.18), using
(8.19) and noting that Tliglol/g?_l =0 for p > 1. [

9 A proof of Proposition 7.1

In the proof of Proposition 7.1 and elsewhere, we make use of the following fact.

Lemma 9.1 For any slowly varying function u : Ry — R, it holds that

. _
Jim 2 u(z) =00, p>0, (9.1)
while
o _
zl}}gom u(z) =0, p<O0. (9.2)

Proof. By the Representation Theorem for slowly varying functions [6, Theorem
1.3.1, p. 12], we can write

u(z) ~ cexp </Az et) dt) (z — o0) (9.3)

t

with constants A > 0 and ¢ > 0, and Borel mapping ¢ : Ry — IR such that
lime(t) = 0. Thus,
t—o0

zPu(z) ~ cA"Pexp (/: —E—(t)T+£ dt) (z = 00). (9.4)
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For every & > 0 there exists t; > A such that |e(t)| < & for ¢ > ¢5, whence

5 ’
o WP 0te oy (9.5)
t t t
so that
T e(t
K+(—5+p)1n(3)g/ i)j—pdthnL(&—kp)ln(f—), s>t (9.6)
ts A t ts
with

t
Kz/”(t)“Lpdt.
A t

The conclusion (9.1) (resp. (9.2)) immediately follows from these inequalities when
selecting & > 0 such that § < p (resp. § < —p), such a selection is always possible
when p > 0 (resp. p < 0). [

The limit (9.1) is useful in the proof of the following discrete analogue to the
direct half of Karamata’s Theorem [6, p. 26].

Proposition 9.2 Let u : Ry — Ry be a slowly varying function. Then the fol-
lowing statements hold:
(i) For any p > —1, we have the asymptotics
r v P+l
nfu(n) ~ u(r r — 00). 9.7
> wuln) ~ T ulr) (= o) (97

n=1

(ii) The mapping @ : Ry — Ry defined by

@)= —= =20 (9.8)
n=1

is a slowly varying function which satisfies

lim = — = 0. (9.9)

Z—00 a(g;)

Proof. (i) Pick 6 in (0,1 + p). By Potter’s bound [6, p. 25], for every A > 0 there

exists 75 4 such that

-5
uln) 4 (ﬁ> , rea<n<r (9.10)



Because p + 1 > 0, we readily see from (9.1) that

1 i "1 /n\Pu(n
mZnPu(n) ~ Z ;(—) u((T; (r = o0)

n=1 Nn=rs A r
1
= / U,(z) dz (9.11)
0
where for each r = 1,2,..., we have defined the functions U, : Ry — R and
T, : IRy = R by
r u(rT-(z
U(z) =1 [z > JTA] T, (z)? —(U—(T()—)) z>0 (9.12)
and )
T,(z) = [m]: . z>0. (9.13)

For every z in (0,1] and 7 = 1,2,... we note that ¢ < T(z) < 2, and the Uniform
Convergence Theorem for slowly varying functions [6, Theorem 1.2.1, p. 6] thus
implies

lim u(rTy(z))

=1 <1 14
r—00 u(r) ) 0 <z - (9 )

Combining (9.12), (9-13) and (9.14) we readily conclude to the pointwise convergence
limU,(z) =2, 0<z< 1 (9.15)
T—>00

Simple bounding arguments based on (9.10) and the classical asymptotics

, L1 /n\P? 1
i Y () e

n=rs§ A r r

can be used to validate the use of the dominated convergence theorem, so that

1 1 1
lim / Uy(z)dz = / Pdr = ——.
r—oc Jg 0 p+1
The conclusion (9.7) follows readily from (9.11).
(ii) Pick € in (0,1). For each £ > 0 we have

=)
i) = ) uln)

n=[ex]+1
[=] 1 u(zZ)
- @) Y iTs
n:[‘;mlﬂn u(z)

E3

~ (@) Y % (z = ), (9.16)

n=[ex]+1
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where the asymptotic equality follows by the Uniform Convergence Theorem [6,
Theorem 1.2.1, p. 6]. Noting that

[2]
lim L e (9.17)

e n=[ex]+1 n
where € can be chosen arbitrarily small, we obtain from (9.16) that

LG . (9.18)

m—»oou(m)

or equivalently, (9.9).
To prove that 4 is slowly varying, pick y > 1 and note for every z >0 that

[yz]

1 u(n)
T ——uaz +u -
u(yz) ) n:%+1nux)

Applying the Uniform Convergence Theorem [6, Theorem 1.2.1, p. 6] once more we

get
[yz] (y=] n
1 1 =
Luln) = Lulzy) u(z)lny (z — o0),
n=[z]+1 nu() n=[z]+1 n u(z)
whence a(y2) ( )
u(yx u(x
— ~1l+—=ly~1 (z—
a@ " @) (=)
upon using (9.9). The case y < 1 is handled in a similar way, and the slow variation
of u follows. u

A proof of Proposition 7.1 From (2.1) it always holds that

E [02]
2E [o]

E[5] = iP[&>n] = + (9.19)

DO =

We consider each of the scalings {¢., r = 1,2,...} associated with Theorems 4.1 —
4.3, separately:

[Theorem 4.1] Under short-range dependence, we have E [0?] < oo, and it is
immediate from (9.19) that Condition (B) holds for the choice {; = /7, 7 =1,2,...
(in fact for any choice such that rll)rgo ¢r = 00). [
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We next turn to Theorems 4.2 and 4.3. Upon substituting (4.1) (with 1 < a < 2)
into (2.1), we readily get from Proposition 9.2(i) that

P[5 >n]= ﬁgp o> j] ~ (a—_ll)m nIOh(n) (n— o),  (9.20)

whence

Z P >n]~ @-DE[] z n'"®h(n) (r — oo) (9.21)

provided E [5] is mﬁmte.
[Theorem 4.2] When « = 2 in (4.1), the condition E [¢%] = oo implies that E [5]
is infinite by (9.19). Thus,

T

ZP g > nj 51—2_: (r = o0) (9.22)

which, from Proposition 9.2(ii) is seen to be slowly varying. By Proposition 4.4, the
scaling {¢r, 7 = 1,2,...} is 1/2-regularly varying, so that
1 T

2 hin) r o0 9.23
ﬁ(r),; o (r—oo) (9.23)

1
— P > -
TZ o >nl~ g

for some slowly varying function h: R, — IR,. The ratio of slowly varying functions
being itself slowly varying, we readily conclude from Lemma 9.1 and (9.23) that
Condition (B) holds. u

[Theorem 4.3] On the range 1 < « < 2, E [0?] is infinite, and so is E [5] by virtue of
(9.19). Proposition 9.2(i) applied to the right handside of the asymptotic equivalence
(9.21) yields
r 1 '
PG ~ 2map : 24
z [0 > n] G- a)a-1B 0] r (r) (r— o0) (9.24)

n=1

By Proposition 4.4 the scaling {{,, » =1,2,...} is 1/a-regularly varying, so that

1 . 55 ]~ 1 h(r) r?=«
P>~ G e DBl 7r) 2

G & (r = o00) (9.25)

for some slowly varying function h: R+ — IR;. The ratio of slowly varying func-
tions is itself slowly varying, and Condition (B) is now a direct consequence of

Lemma 9.1 once we note that 2 — a — a~! < 0 for a > 0. [ |
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10 Appendix — Asymptotic invertibility of regularly vary-
ing functions
The proof of Proposition 4.4 relies on the following general fact.

Proposition 10.1 Consider a Borel measurable function B : Ry — R such that
zli)nc}c)[a’(cc) = 0. With A > 0, the equation

1 —pB(t
y:exp(/A f”dt), z>Ay>0 (10.1)
has a unique solution z = z(y) for all y large enough. Moreover,
. z(vy)
1 = 0 10.2
gy~ 10 (10.2)

or equivalently the mapping y — x(y) is regularly varying of order 1, i.e., z(y) ~
yu(y) (y — oo) for some slowly varying function v : Ry — R..

Proof. Set

Blz) = /: ! 'f(t) it, ©>A (10.3)

and pick ¢ in (0,1). Since zll)rgoﬁ(a:) = 0, there exists A* = A*(¢) > A such that
1—-¢ 1-p() 1+¢

t < t < t

It is straightforward to see that zll)rrolo B(z) = oo and B(A) = 0, and by continuity,

t> A (10.4)

the range of  — B(z) contains the semi-infinite interval [1, 0o). We also conclude
from (10.4) that = — B(z) is strictly monotone increasing on the interval [A*, 00),
and the existence and uniqueness of a solution to (10.1) follows whenever y > y*
with y* = exp(B(A4*)). The solution mapping y — z(y) is strictly increasing on
[y*, 00).

We now turn to proving (10.2). There is nothing to prove when y = 1. With
v > 1, whenever y > y*, we get

Y _ _ =) 1 — B(t)
Y exp(B(z(vy)) — B(z(y))) = exp (/z(y) . dt) ) (10.5)
and the use of the inequalities (10.4) yields

z(y)]'"* z(yy) ]

2l =<5 (10:6)
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or equivalently,

z(y)
Letting y go to infinity in (10.7), we get
'ylwlLE < lim inf z(yy) < lim sup el < 71i57 (10.8)
vooo z(y) T oyooe 2(y)

and (10.2) is obtained as we note that ¢ is arbitrary in (0,1). The case v < 1 is

handled in a similar way; details are omitted in the interest of brevity. [ |

Lemma 10.2 Consider slowly varying functions u,w : Ry — R, such that u(z) ~
w(z) (z — 00), and let & > 1. For any sequences {¢,, v = 1,2,...} and {n,, r =

1,2,...} with Tll)rgo(r = Tl_lq)rgogr = oo such that

Tim r¢;%u((y) = lim ro%w(n,) = K (10.9)

for some finite constant K > 0, it holds that {, ~ n, (r — 00).

Proof. We first look at the special case when u = w, in which case condition
(10.9) implies
lim w =1. (10.10)
T i “u(7r )
We refer to the proof of Lemma 9.1, where we introduced the asymptotically equiv-
alent representation (9.3) of the slowly varying function w. Substituting (9.3) in

(10.10), we see that

ér — Nr —
lim exp (—/ O‘—a(t)dw/ gﬂdt>=1,
T—00 A t A t

or, equivalently,

Nr —e(t
lim '/ a—:(—ldt| =0. (10.11)
Cr

T—00

Pick § in (0, ). Because lim (, = lim n, = oo, there exists rs such that for r > rg
=00 T3>0

we have |e(t)| < & whenever ¢ > min((,,7,). Thus,

r — t
<‘/ a—€~(—)dt‘, r > TS,
¢ t

lnn—r

(a — 9) a
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and combining this last inequality with (10.11) we obtain the desired conclusion
/G =1
In general, when u and w are not necessarily equal, we note the easy relation

GoulG) _ rGtule) wl) (10.12)

nr “u(nr) 1 “w(nr) u(ny)

Condition (10.9) and the asymptotic equivalence of v and w together imply that
the relation (10.10) still holds, and the conclusion {, ~ 1, (r — oco) follows from the
first part of the proof. u

Proposition 10.3 Consider a slowly varying functionv : Ry — R4, and let o > 1.
For any sequence {(;, 7 = 1,2,...} with Tliglog} = oo such that (10.9) holds, we have

& ~raw(r) (r— o) (10.13)

for some slowly varying function w : Ry — Ry.

Proof. We go back to the proof of Lemma 9.1, where we introduced the asymp-
totically equivalent representation (9.3) of the slowly varying function u. In view of
Lemma 10.2, it suffices to consider a sequence {(,, 7 = 1,2,...} determined by the

relations

Cr t
r(,‘“-cexp(/ #dt)zK, > T (10.14)

A
with r* large enough, with constants A > 0 and ¢ > 0, and Borel mapping ¢ : IRy —
IR such that tl_i)m e(t) = 0. By simple manipulations, we can write (10.14) in the
o0

equivalent form

: 1 —
Bra =exp (/ Ltﬁ—(t) dt) , T Ty (10.15)
A
with .
c « 1
= = - > 0. .
B (KAQ) and ()= ~e(t), 20 (10.16)

Hence, by Proposition 10.1, for large enough r we see that (. is the unique solution
z(y) of the equation (10.1) with y = Bra. By the second part of Proposition 10.1,
we have

¢ = x(Bré) ~ Bral'u(Bré) (r = 00), (10.17)
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and the desired conclusion is now immediate once we note that the mapping w :

T — BU(B.’I,‘é) is slowly varying whenever v is. ]
References
[1] R. G. Addie, M. Zukerman, and T. Neame, “Fractal traffic: Measurements,

modeling and performance evaluation,” in Proceedings of IEEE Infocom 95,
pp. 985-992, Boston (MA), April 1995.

B. von Bahr and C. G. Esseen, “Inequalities for the 7" absolute moment of a
sum of random variables, 1 < r < 2,” Annals of Mathematical Statistics, 36
(1965), pp. 299-303.

J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Long-range depen-
dence in variable bit-rate video traffic,” IEEE Transactions on Communications
COM-43 (1995), pp. 1566-1579.

P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New
York (NY), 1968.

N. H. Bingham, “Fluctuation theory in continuous time,” Advances in Applied
Probability, 7 (1975), pp. 705-766.

N. H. Bingham, C. M. Goldie and J. T. Teugels, Regular Variation. Encyclo-
pedia of Mathematics and its Applications, Cambridge Univerity Press, Cam-
bridge (UK), 1987.

F. Brichet, J. Roberts, A. Simonian, and D. Veitch, “Heavy traffic analysis of
a storage model with long range dependent on/off sources,” Queueing Systems
— Theory and Applications, 23 (1996), pp. 197-215.

D. R. Cox, “Longrange dependence: A review,” In H. A. David and H. T.
David, editors, Statistics: An Appraisal, The Iowa State University Press, Ames
(IA), 1984, pp. 55-74.

N. G. Duffield, “On the relevance of long-tailed durations for the statistical
multiplexing of large aggregations,” in Proceedings of the 34th Annual Allerton
Conference on Communications, Control and Computing, October 1996.

34



[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

A. Erramilli, O. Narayan, and W. Willinger, “ Experimental queueing anal-
ysis with long-range dependent packet traffic,” IEEE/ACM Transactions on
Networking 4 (1996), pp. 209-223.

W. Feller, An Introduction to Probability Theory and Its Applications, Vol-
ume II, Second Edition, John Wiley & Sons, New York (NY), 1972.

J. M. Harrison, Brownian Motion and Stochastic Flow systems. John Wiley &
Sons, New York (NY), 1985.

P. Hall and C. C. Heyde, Martingale Limit Theory and its Applications, Aca-
demic Press, New York (NY), 1980.

P. R. Jelenkovié and A. A. Lazar, “Multiplexing on-off sources with subexpo-
nential on periods: part 1,” Proceedings of IEEE Infocom 97, Kobe (Japan),
April 1997.

T. Konstantopoulos and S.-J. Lin, “Fractional Brownian motions and Lévy
motions as limits of stochastic traffic models,” in Proceedings of the 34th An-
nual Allerton Conference on Communication, Control and Computation, pp.
913-922, October 1996.

J. Lamperti, “Semi-stable stochastic processes,” Transactions of the American
Mathematical Society 104 (1962), pp. 62-78.

W. Leland, M. S. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of Ethernet traffic (extended version),” IEEE/ACM Transactions on
Networking 2 (1994), pp. 1-15.

N. Likhanov, B. Tsybakov, and N. D. Georganas, “Analysis of an ATM buffer
with self similar (fractal) input traffic,” in Proceedings of IEEE Infocom 95,
pp. 985-992, Boston (MA), April 1995.

7. Liu, Ph. Nain, D. Towsley and Z.-L. Zhang, “Asymptotic behavior of a
multiplexer fed by a long-range dependent process,” Preprint, February 1997.

C. M. Newman and A. L. Wright, “An invariance principle for certain dependent
sequences,” The Annals of Probability 9 (1981), pp. 671-675.

I. Norros, “A storage model with self-similar input,” Queueing Systems — The-
ory and Applications 16 (1994), pp. 387-396.

35



22]

[23]

[24]

[25]

[26]

[31]

[32]

[33]

M. Parulekar and A. M. Makowski, “Tail probabilities for M|GIjoo processes
(I): Preliminary asymptotics,” submitted to Queueing Systems — Theory and
Applications, 1996.

M. Parulekar and A. M. Makowski, “M|GI|occ input processes : A versatile
class of models for network traffic,” in Proceedings of IEEE Infocom 97, Kobe
(Japan), April 1997.

V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson modeling,”
IEEE/ACM Transactions on Networking 3 (1993), pp. 226-244.

M. I. Reiman and B. Simon, “An interpolation approximation for queueing

systems with Poisson input,” Operations Research 36 (1988), pp. 454-469.

M. I. Reiman and B. Simon, “Light traffic limits of sojourn time distributions
in Markovian queuing networks,” Stochastic Models 4 (1988), pp. 191-233.

M. I. Reiman and B. Simon, “Open queueing systems in light traffic,” Mathe-
matics of Operations Research 14 (1989), pp. 26-59.

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes,
Chapman and Hall, London (UK), 1994.

A. V. Skorokhod, “Limit theorems for stochastic processes with independent
increments,” Theory of Probability and its Applications, 2 (1957), pp. 138-171.

V. Solo, “On queueing theory for broadband communication network traffic
with long range correlation,”in Proceedings of the 34th Conference on Decision
and Control, pp. 853-858, New Orleans (LLA), December 1995.

K. P. Tsoukatos and A. M. Makowski, “Heavy traffic analysis for a multiplexer
driven by M|GI|oo input processes,” in Proceedings of ITC 15, Washington
(DC), June 1997.

K. P. Tsoukatos, Ph.D. Thesis, Electrical Engineering Department, University
of Maryland, College Park (MD), in preparation.

W. Whitt, “Some useful functions for functional limit theorems,” Mathematics
of Operations Research 5 (1980), pp. 67-85.

36



